Automatic detection and indexing of video-event shots for surveillance applications
IEEE Transactions on Multimedia, ISSN: 1520-9210, Vol: 4, Issue: 4, Page: 459-471
2002
- 51Citations
- 39Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Increased communication capabilities and automatic scene understanding allow human operators to simultaneously monitor multiple environments. Due to the amount of data to be processed in new surveillance systems, the human operator must be helped by automatic processing tools in the work of inspecting video sequences. In this paper, a novel approach allowing layered content-based retrieval of video-event shots referring to potentially interesting situations is presented. Interpretation of events is used for defining new video-event shot detection and indexing criteria. Interesting events refer to potentially dangerous situations: abandoned objects and predefined human events are considered in this paper. Video-event shot detection and indexing capabilities are used for online and offline content-based retrieval of scenes to be detected.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know