PlumX Metrics
Embed PlumX Metrics

Toward the Optimal Design and FPGA Implementation of Spiking Neural Networks

IEEE Transactions on Neural Networks and Learning Systems, ISSN: 2162-2388, Vol: 33, Issue: 8, Page: 3988-4002
2022
  • 33
    Citations
  • 0
    Usage
  • 62
    Captures
  • 4
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Why a Brain-on-a-Chip Would Need Little Training

A biomimicking "spiking" neural network on a microchip has enabled KAUST researchers to lay the foundation for developing more efficient hardware-based artificial intelligence computing systems.

Article Description

The performance of a biologically plausible spiking neural network (SNN) largely depends on the model parameters and neural dynamics. This article proposes a parameter optimization scheme for improving the performance of a biologically plausible SNN and a parallel on-field-programmable gate array (FPGA) online learning neuromorphic platform for the digital implementation based on two numerical methods, namely, the Euler and third-order Runge-Kutta (RK3) methods. The optimization scheme explores the impact of biological time constants on information transmission in the SNN and improves the convergence rate of the SNN on digit recognition with a suitable choice of the time constants. The parallel digital implementation leads to a significant speedup over software simulation on a general-purpose CPU. The parallel implementation with the Euler method enables around 180× (20×) training (inference) speedup over a Pytorch-based SNN simulation on CPU. Moreover, compared with previous work, our parallel implementation shows more than 300× (240×) improvement on speed and 180× (250×) reduction in energy consumption for training (inference). In addition, due to the high-order accuracy, the RK3 method is demonstrated to gain 2× training speedup over the Euler method, which makes it suitable for online training in real-time applications.

Bibliographic Details

Guo, Wenzhe; Yantir, Hasan Erdem; Fouda, Mohammed E; Eltawil, Ahmed M; Salama, Khaled Nabil

Institute of Electrical and Electronics Engineers (IEEE)

Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know