Laser Cladding of Titanium Alloys: A Review
2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2023, Page: 158-163
2023
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Conference Paper Description
Over the years, titanium and titanium alloys have seen a rise in choice of material for many industries such as, biomedical, automotive, aerospace, marine, energy, and chemical industries. The main reason for the demand for titanium is its great combination of properties; excellent corrosion resistance, fatigue strength, low density, biocompatibility, high fracture toughness, and easy formability. TiAl4V is the most popular of the titanium alloys not only because of its excellent properties but also because it is by far the most studied alloy of all the titanium alloys. This gives the alloy a great advantage as it is continuously investigated through different processing techniques for better and improved performance. Processing techniques for the fabrication of titanium and titanium alloys include both conventional, still and additive manufacturing methods. Plenty research shows that conventional ways result in wasted time, energy and material hence more and more investment has gone into alternative ways over the past decade. The paper reviews the additive manufacturing method, laser cladding. This is a technique employed for surface modification of metallic tools which is mainly used when abrasive and corrosive behaviour is the required specification for application. Unfortunately, despite its excellent exhibition of properties, titanium is not without shortfalls, in the tribology-related industry, titanium fails to uphold good performance for surface hardness, friction coefficient and wear which limits their popularity and application. For this reason, the continual research and investigation for the enhancement of Ti6Al4V alloy is of great importance. This review is a collection of investigations that have been attempted with the objective of improving the problems of the titanium metals through laser cladding. The findings are reviewed and summarized.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know