Comparison of Handcrafted Features and Deep Learning in Classification of Medical X-ray Images
Proceedings - 2018 4th International Conference on Information Retrieval and Knowledge Management: Diving into Data Sciences, CAMP 2018, Page: 73-78
2018
- 18Citations
- 24Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The rapid growth and spread of radiographic equipment in medical centres have resulted in a corresponding increase in the number of medical X-ray images produced. Therefore, more efficient and effective image classification techniques are required. Three different techniques for automatic classification of medical X-ray images were compared. A bag-of-visual-words model and a Convolutional Neural Network (CNN) were used to extract features from the images. The two groups of extracted feature vectors were each used to train a linear support vector machine classifier. Third, a fine-tuned CNN was used for end-to-end classification. A pre-trained CNN was used to overcome dataset limitations. The three techniques were evaluated on the ImageCLEF 2007 medical database. The database provides medical X-ray images in 116 categories. The experimental results showed that fine-tuned CNN outperforms the other two techniques by achieving per class classification accuracy above 80% in 60 classes compared to 24 and 26 classes for bag-of-visual-words and CNN extracted features respectively. However, certain classes remain difficult to classify accurately such as classes in the same sub-body region due to inter-class similarity.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know