Non-Invasive Stimulation-Based Tactile Sensation for Upper-Extremity Prosthesis: A Review
IEEE Sensors Journal, ISSN: 1530-437X, Vol: 17, Issue: 9, Page: 2625-2635
2017
- 56Citations
- 152Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
An ideal hand prosthesis should provide satisfying functionality based on reliable decoding of the user's intentions and deliver tactile feedback in a natural manner. The absence of tactile feedback impedes the functionality and efficiency of dexterous hand prostheses, which leads to a high rejection rate from prostheses users. Thus, it is expected that integration of tactile feedback with hand prostheses will improve the manipulation performance and enhance perceptual embodiment for users. This paper reviews the state-of-the-art of non-invasive stimulation-based tactile sensation for upper-extremity prostheses, from the physiology of the human skin, to tactile sensing techniques, non-invasive tactile stimulation, and an emphasis on electrotactile feedback. The paper concludes with a detailed discussion of recent applications, challenging issues, and future developments.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85018971405&origin=inward; http://dx.doi.org/10.1109/jsen.2017.2674965; https://ieeexplore.ieee.org/document/7865898/; http://ieeexplore.ieee.org/document/7865898/; http://xplorestaging.ieee.org/ielx7/7361/7895221/07865898.pdf?arnumber=7865898
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know