Simulating human single motor units using self-organizing agents
International Conference on Self-Adaptive and Self-Organizing Systems, SASO, ISSN: 1949-3673, Page: 11-20
2012
- 9Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Understanding functional synaptic connectivity of human central nervous system is one of the holy grails of the neuroscience. Due to the complexity of nervous system, it is common to reduce the problem to smaller networks such as motor unit pathways. In this sense, we designed and developed a simulation model that learns acting in the same way of human single motor units by using findings on human subjects. The developed model is based on self-organizing agents whose nominal and cooperative behaviors are based on the current knowledge on biological neural networks. The results show that the simulation model generates similar functionality with the observed data. © 2012 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know