Parallel Exchange of Randomized SubGraphs for Optimization of Network Alignment: PERSONA
IEEE/ACM Transactions on Computational Biology and Bioinformatics, ISSN: 1557-9964, Vol: 20, Issue: 3, Page: 2064-2077
2023
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The aim of Network Alignment in Protein-Protein Interaction Networks is discovering functionally similar regions between compared organisms. One major compromise for solving a network alignment problem is the trade-off among multiple similarity objectives while applying an alignment strategy. An alignment may lose its biological relevance while favoring certain objectives upon others due to the actual relevance of unfavored objectives. One possible solution for solving this issue may be blending the stronger aspects of various alignment strategies until achieving mature solutions. This study proposes a parallel approach called PERSONA that allows aligners to share their partial solutions continuously while they progress. All these aligners pursue their particular heuristics as part of a particle swarm that searches for multi-objective solutions of the same alignment problem in a reactive actor environment. The actors use the stronger portion of a solution as a subgraph that they receive from leading or other actors and send their own stronger subgraphs back upon evaluation of those partial solutions. Moreover, the individual heuristics of each actor takes randomized parameter values at each cycle of parallel execution so that the problem search space can thoroughly be investigated. The results achieved with PERSONA are remarkably optimized and balanced for both topological and node similarity objectives.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know