Enhancing Defect Detection in Circuit Board Assembly Using AI and Text Analytics for Component Failure Classification
IEEE Transactions on Components, Packaging and Manufacturing Technology, ISSN: 2156-3985, Vol: 14, Issue: 10, Page: 1881-1890
2024
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
This article investigates the application of text analytics for defect detection and characterization in electronics manufacturing of printed circuit board assembly by analyzing structured and unstructured textual data from circuit board and packaged chip testing. Traditional defect detection methods often overlook the valuable insights found in unstructured textual observations recorded by technicians and engineers during manufacturing processes. This research leverages text analytics to transform these descriptive narratives into structured, actionable data, thereby improving the precision and efficiency of defect identification. A Naïve Bayes model was employed for classification, and natural language processing (NLP) techniques were utilized to extract meaningful patterns from defect descriptions. The results indicate high classification accuracy for components, such as 'capacitor,' 'FPGA,' and 'resistor,' while also identifying challenges in distinguishing 'capacitor' from 'transistor.' The expected outcomes of this research include the enhancement of defect detection precision and efficiency, leading to more effective quality control processes in electronics manufacturing. This study highlights the integration gap in real-time text analytics and demonstrates the potential of machine learning algorithms in manufacturing defect characterization, offering actionable insights for optimizing quality control strategies.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know