Machine Learning-Based Workload Orchestrator for Vehicular Edge Computing
IEEE Transactions on Intelligent Transportation Systems, ISSN: 1558-0016, Vol: 22, Issue: 4, Page: 2239-2251
2021
- 69Citations
- 70Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Internet of Vehicles (IoV) vision encompasses a wide range of novel intelligent highway scenarios that rely on vehicles with an ever-increasing degree of autonomy and the prospect of sophisticated services like e-Horizon and cognitive driving assistance. The self-driving vehicle, on the other hand, entails a new passenger profile where sophisticated infotainment applications are expected to enhance the quality of travel. From the technical stand point, for this vision to become a reality a streamlined edge computing infrastructure, namely Vehicular Edge Computing (VEC), is required where computationally intensive workloads are offloaded to a nearby VEC infrastructure. However, the highly dynamic environment renders it difficult to efficiently operate a VEC system to yield the crisp performance required on an autonomous vehicle. In this setting, where to offload each task stands out as a crucial decision problem, and the conventional methods prove insufficient for its solution. In our work, we proposed a two-stage machine learning-based vehicular edge orchestrator which takes into account not only the task completion success but also the service time. To demonstrate how our approach performs in a realistic setting, we employed EdgeCloudSim to design extensive experiments where the characteristics of the vehicular applications, upload/download sizes, computational footprints of the tasks, the LAN, MAN and WAN network models, and the mobility are considered. Detailed performance evaluation of the proposed system via simulation is carried out where both overall and service type-specific performance scores in comparison with opponent schemes are reported.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know