Microclimatic variation in tropical canopies: A glimpse into the processes of community assembly in epiphytic bryophyte communities
Journal of Ecology, ISSN: 1365-2745, Vol: 110, Issue: 12, Page: 3023-3038
2022
- 19Citations
- 36Captures
- 3Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Microclimatic variation mainly drives species composition and phylogenetic structure of epiphytic communities
Epiphytic communities offer an original framework to disentangle the contributions of environmental filters, biotic interactions and dispersal limitations to community structure at fine spatial scales. Bryophytes are ideal models to investigate the impact of microclimatic variation on community composition. However, no studies have examined the relationship between microclimatic variation and spec
Article Description
Epiphytic communities offer an original framework to disentangle the contributions of environmental filters, biotic interactions and dispersal limitations to community structure at fine spatial scales. We determine here whether variations in light, microclimatic conditions and host tree size affect the variation in species composition and phylogenetic structure of epiphytic bryophyte communities, and hence, assess the contribution of environmental filtering, phylogenetic constraints and competition to community assembly. A canopy crane giving access to 1.1 ha of tropical rainforest in Yunnan (China) was employed to record hourly light and microclimatic conditions from 54 dataloggers and epiphytic bryophyte communities from 408 plots. Generalized Dissimilarity Modelling was implemented to analyse the relationship between taxonomic and phylogenetic turnover among epiphytic communities, host-tree characteristics and microclimatic variation. Within-tree vertical turnover of bryophyte communities was significantly about 30% higher than horizontal turnover among-trees. Thus, the sharp vertical variations in microclimatic conditions from tree base to canopy are more important than differences in age, reflecting the likelihood of colonization, area, and habitat conditions between young and old trees, in shaping the composition of epiphytic bryophyte communities. Our models, to which microclimatic factors contributed most (83–98%), accounted for 33% and 18% of the variation in vertical turnover in mosses and liverworts, respectively. Phylogenetic turnover shifted from significantly negative or non-significant within communities to significantly positive among communities, and was slightly, but significantly, correlated with microclimatic variation. These patterns highlight the crucial role of microclimates in determining the composition and phylogenetic structure of epiphytic communities. Synthesis. The mostly non-significant phylogenetic turnover observed within communities does not support the idea that competition plays an important role in epiphytic bryophytes. Instead, microclimatic variation is the main driver of community composition and phylogenetic structure, evidencing the role of phylogenetic niche conservatism in community assembly.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know