Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA
Environmental Microbiology, ISSN: 1462-2920, Vol: 17, Issue: 2, Page: 364-382
2015
- 100Citations
- 95Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations100
- Citation Indexes99
- 99
- CrossRef92
- Policy Citations1
- Policy Citation1
- Captures95
- Readers95
- 95
- Mentions1
- References1
- Wikipedia1
Article Description
Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it 'Lake Kryos' after a nearby depression. This lake is filled with magnesium chloride (MgCl)-rich, athalassohaline brine (salinity>470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHALDiscovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl-rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl concentrations previously considered incompatible with life. We characterized the microbiology of the seawater-Kryos brine interface and managed to recover mRNA from the 2.27-3.03M MgCl layer (equivalent to 0.747-0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related to Desulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for >85% of the rRNA-containing archaeal clones derived from the 2.27-3.03M MgCl layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know