Molecular polymorphism and linkage analysis in sweet passion fruit, an outcrossing species
Annals of Applied Biology, ISSN: 0003-4746, Vol: 162, Issue: 3, Page: 347-361
2013
- 28Citations
- 55Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
One of the current challenges of tropical fruit crop improvement is to incorporate molecular marker-based approaches into conventional breeding programmes. This study was designed to build an integrated genetic map of the sweet passion fruit (Passiflora alata), a diploid (2n = 18) outcrossing species which is greatly appreciated for in natura consumption, and reported to inspire cosmetic and pharmaceutical companies to create plant-derived compounds. With this in mind, a full-sib family of 180 individuals was genotyped using different molecular marker types, such as amplified fragment length polymorphisms (AFLP), microsatellite-AFLP (M-AFLP), simple sequence repeats (SSR), resistance gene analogues (RGA) and target region amplification polymorphism (TRAP). On average, the rate of polymorphism between the parental genotypes was 20.3%. We also searched for single nucleotide polymorphisms (SNPs) in some AFLP bands and in seven gene fragments, and found one SNP every 87 bp. All SNPs were biallelic and occurred most frequently in putative gene fragments (81.5%) rather than in AFLP bands (60.0%) analyzed. Excellent gel profiles were obtained allowing the recognition of all types of segregation expected for a progeny of an outcrossing species. Multipoint linkage analysis was performed using OneMap software, with logarithm of the odds (LOD) score ≥ 5.6 and recombination fraction <0.5. The resulting integrated map consists of 549 markers, 2.0% of which fit a segregation ratio of 1:1:1:1, 1.3% a ratio of 1:2:1, 27.3% a ratio of 3:1 and 69.4% a ratio of 1:1. The map spanned a total of 2073.0 cM, with an average distance between adjacent markers of 3.8 cM. This is the first linkage study on sweet passion fruit and should prove useful for quantitative trait loci mapping. © 2013 Association of Applied Biologists.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know