How machine learning facilitates decision making in emergency departments: Modelling diagnostic test orders
International Journal of Clinical Practice, ISSN: 1742-1241, Vol: 75, Issue: 12, Page: e14980
2021
- 3Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef3
- Captures17
- Readers17
- 17
Article Description
Objectives: Since emergency departments (EDs) are responsible for providing initial care for patients who may need urgent medical care, they are highly sensitive to increased patient delays. A key factor that increases patient delays is ordering diagnostic tests. Therefore, understanding the factors increasing diagnostic test orders and proposing efficient models may facilitate decision making in EDs. Methods: Month and week of the year, day of the week, and daily numbers of patients encoded based on 21 different ICD-10 codes were used as input variables. Daily test frequencies of patients requiring tests from laboratory and imaging services were modelled separately by linear regression models. Although significance of the input variables was identified based on these models, obtained forecasts and residuals were further processed by machine learning techniques to obtain hybrid models. Results: Day of the week, and number of patients with ICD-10 codes of ‘A00-B99’, ‘I00-I99’, ‘J00-J99’, ‘M00-M99’ and ‘R00-R99’ were significant in both test types. In addition to these, although daily patient frequencies with ‘H60-H95’, ‘N00-N99’ and ‘O00-O9A’ were significant for laboratory services, ‘L00-L99’, ‘S00-T88’ and ‘Z00-Z99’ were significant for imaging services. Although prediction accuracies of regression models were, respectively, as 93.658% and 95.028% for laboratory and imaging services modelling, they increased to 99.997% and 99.995% with the machine learning-integrated hybrid model. Conclusion: The significant factors identified here can predict increases in use of laboratory and imaging services. This could enable these services to be prepared in advance to reduce ED patient delays, thereby reducing ED overcrowding. The proposed model may also be efficiently used for decision making.
Bibliographic Details
Hindawi Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know