Growth optimization of algae for biodiesel production
Journal of Applied Microbiology, ISSN: 1365-2672, Vol: 111, Issue: 2, Page: 312-318
2011
- 38Citations
- 141Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations38
- Citation Indexes38
- 38
- CrossRef28
- Captures141
- Readers141
- 141
Article Description
Aims: Algae are favourable as a biofuel source because of the potential high oil content and fast generation of biomass. However, one of the challenges for this technology is achieving high oil content while maintaining exponential or high growth of the organism. Introducing a two-stage reactor to optimize both growth and oil content of the algae could be a solution to this hurdle. The aim of this study was to determine the reactor design parameters of the first-stage reactor, which would optimize growth of two algal strains, Oocystis sp. and Amphora sp. Methods and Results: Growth kinetics were monitored by in vivo fluorescence and correlated to dry mass for both cultures under several environmental conditions during exponential growth. Temperatures of 25 and 30°C and light intensities of 150 and 80μmolms provided the most robust growth for Oocystis sp. and Amphora sp., respectively. Both strains showed optimized growth at a light:dark cycle of 16:08. At these conditions, the doubling rate for Oocystis sp. was 0·333d and for Amphora sp. was 0·179d. Conclusions: For both cultures, growth rate was more dependent on light: dark cycle and temperature than light intensity. Both strains grew slower in this work than data reported in the literature, however agitation and air/CO sparging were not incorporated in the system under study. The highest doubling rate for Amphora sp. was observed near the maximum tolerable temperature, and it is suggested to grow this strain at 30°C for a consistent high growth rate. Significance and Impact of Study: Optimized growth conditions were determined for two lipid producing strains identified in the Aquatic Species Program summary report. An optimized, first-stage growth reactor operating at these conditions would thus offer the maximum productivity for an algal biomass feed stream into a lipid-optimized second-stage reactor. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know