Observational constraints on the modelling of SN 1006
Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 413, Issue: 3, Page: 1643-1656
2011
- 14Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Experimental spectra and images of the supernova remnant SN 1006 have been reported for radio, X-ray and TeV gamma-ray bands. Several comparisons between models and observations have been discussed in the literature, showing that the broad-band spectrum from the whole remnant as well as a sharpest radial profile of the X-ray brightness can be both fitted by adopting a model of SN 1006 which strongly depends on the non-linear effects of the accelerated cosmic rays; these models predict post-shock magnetic field (MF) strengths of the order of 150. Here, we present a new way to compare models and observations, in order to put constraints on the physical parameters and mechanisms governing the remnant. In particular, we show that a simple model based on the classic magnetohydrodynamic (MHD) and cosmic rays acceleration theories (hereafter the 'classic' model) allows us to investigate the spatially distributed characteristics of SN 1006 and to put observational constraints on the kinetics and MF. Our method includes modelling and comparison of the azimuthal and radial profiles of the surface brightness in radio, hard X-rays and TeVγ-rays as well as the azimuthal variations of the electron maximum energy. In addition, this simple model also provides good fits to the radio-to-gamma-ray spectrum of SN 1006. We find that our best-fitting model predicts an effective MF strength inside SN 1006 of, in good agreement with the 'leptonic' model suggested by the HESS Collaboration. Finally, some difficulties in both the classic and the non-linear models are discussed. Some evidence about non-uniformity of MF around SN 1006 is noted. © 2011 The Authors. Monthly Notices of the Royal Astronomical Society © 2011 RAS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79955783361&origin=inward; http://dx.doi.org/10.1111/j.1365-2966.2011.18237.x; https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2011.18237.x; http://academic.oup.com/mnras/article-pdf/413/3/1643/2868294/mnras0413-1643.pdf; https://dx.doi.org/10.1111/j.1365-2966.2011.18237.x; https://academic.oup.com/mnras/article/413/3/1643/964022
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know