PlumX Metrics
Embed PlumX Metrics

Shear modulus of neutron star crust

Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 416, Issue: 1, Page: 22-31
2011
  • 38
    Citations
  • 0
    Usage
  • 14
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    38
    • Citation Indexes
      38
  • Captures
    14

Article Description

The shear modulus of solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At a given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with a uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative ∝T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology. © 2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know