A new ordering parameter of spectral energy distributions from synchrotron self-Compton emitting blazars
Monthly Notices of the Royal Astronomical Society, ISSN: 0035-8711, Vol: 420, Issue: 1, Page: 84-102
2012
- 29Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The broad-band SEDs of blazars exhibit two broad spectral components, which in leptonic emission models are attributed to synchrotron radiation and synchrotron self-Compton (SSC) radiation of relativistic electrons. During high-state phases, the high-frequency SSC component often dominates the low-frequency synchrotron component, implying that the inverse-Compton SSC losses of electrons are at least equal to or greater than the synchrotron losses of electrons. We calculate from the analytical solution of the kinetic equation of relativistic electrons, subject to the combined linear synchrotron and non-linear SSC cooling, for monoenergetic injection the time-integrated total synchrotron and SSC radiation fluences and spectral energy distributions (SEDs). Depending on the ratio of the initial cooling terms, displayed by the injection parameter α, we find for α≪ 1, implying complete linear cooling, that the synchrotron peak dominates the inverse-Compton peak and the usual results of the spectra are recovered. For α≫ 1, the SSC peak dominates the synchrotron peak, proving our assumption that in such a case the cooling becomes initially non-linear. The spectra also show some unique features, which can be attributed directly to the non-linear cooling. To show the potential of the model, we apply it to outbursts of 3C 279 and 3C 454.3, successfully reproducing the SEDs. The results of our analysis are promising, and we argue that this non-equilibrium model should be considered in future modelling attempts for blazar flares. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84856222274&origin=inward; http://dx.doi.org/10.1111/j.1365-2966.2011.20004.x; https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2011.20004.x; http://academic.oup.com/mnras/article-pdf/420/1/84/18452918/mnras0420-0084.pdf; https://dx.doi.org/10.1111/j.1365-2966.2011.20004.x; https://academic.oup.com/mnras/article/420/1/84/1042776
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know