Optimal estimation retrievals of the atmospheric structure and composition of HD189733b from secondary eclipse spectroscopy
Monthly Notices of the Royal Astronomical Society, ISSN: 0035-8711, Vol: 420, Issue: 1, Page: 170-182
2012
- 146Citations
- 47Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recent spectroscopic observations of transiting hot Jupiters have permitted the derivation of the thermal structure and molecular abundances of H O, CO , CO and CH in these extreme atmospheres. Here, for the first time, we apply the technique of optimal estimation to determine the thermal structure and composition of an exoplanet by solving the inverse problem. The development of a suite of radiative transfer and retrieval tools for exoplanet atmospheres is described, building upon a retrieval algorithm which is extensively used in the study of our own Solar system. First, we discuss the plausibility of detection of different molecules in the dayside atmosphere of HD189733b and the best-fitting spectrum retrieved from all publicly available sets of secondary eclipse observations between 1.45 and 24μm. Additionally, we use contribution functions to assess the vertical sensitivity of the emission spectrum to temperatures and molecular composition. Over the altitudes probed by the contribution functions, the retrieved thermal structure shows an isothermal upper atmosphere overlying a deeper adiabatic layer (temperature decreasing with altitude), which is consistent with previously reported dynamical and observational results. The formal uncertainties on retrieved parameters are estimated conservatively using an analysis of the cross-correlation functions and the degeneracy between different atmospheric properties. The formal solution of the inverse problem suggests that the uncertainties on retrieved parameters are larger than suggested in previous studies, and that the presence of CO and CH is only marginally supported by the available data. Nevertheless, by including as broad a wavelength range as possible in the retrieval, we demonstrate that available spectra of HD189733b can constrain a family of potential solutions for the atmospheric structure. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84856230455&origin=inward; http://dx.doi.org/10.1111/j.1365-2966.2011.20013.x; https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2011.20013.x; https://dx.doi.org/10.1111/j.1365-2966.2011.20013.x; https://academic.oup.com/mnras/article/420/1/170/1043593
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know