Overexpression of DNA Methyltransferase in Myoblast Cells Accelerates Myotube Formation
European Journal of Biochemistry, ISSN: 1432-1033, Vol: 231, Issue: 2, Page: 282-291
1995
- 53Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We overexpressed mouse DNA methyltransferase in murine C2C12 myoblast cells and tested the isolated clones for their ability to differentiate. Significant numbers of the clones showed distinct myotubes 24 h after the isolated transformants had been induced to differentiate, whereas the parent C2C12 cells did not form myotubes at this time point. Transfection of the vacant vector or the plasmid containing the reverse‐oriented DNA methyltransferase cDNA did not provide significant numbers of transformants with the accelerated differentiation phenotype, suggesting that the effect is caused by the expression of DNA methyltransferase. The expressions of skeletal muscle myosin and creatine kinase in clones that showed the accelerated differentiation‐phenotype were also induced about 24 h earlier and at higher levels relative to the parent C2C12 or the control cells, indicating that the entire process of myogenesis had been accelerated. All the methyltransferase‐transfected clones, regardless of their phenotypes, demonstrated about threefold higher DNA methyltransferase activity and higher methylation levels than those of the clones transfected with vector alone or the reverse‐oriented plasmid. At the early stage of transfection of the sense‐oriented plasmid, high de novo methylation activities were detected. We consider it likely that this high de novo methylation activity is the reason for the high methylation levels and the accelerated myotube formation of the clones transfected with the sense‐oriented plasmid. In some transformants which showed the accelerated differentiation phenotype, MyoD1 was already fully expressed under the growth conditions while, in control cells, MyoD1 was expressed at low levels. This elevated level of MyoD1 transcription could account for the accelerated myotube formation observed in the transformants. The methylation state of the HpaII sites in exon 1 through exon 2 of the MyoD1 gene and the expression of the MyoD1 transcript are positively correlated. Copyright © 1995, Wiley Blackwell. All rights reserved
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know