Metathetic reaction in reverse micelles: Synthesis of nanostructured alkaline-earth metal phosphates
Journal of the American Ceramic Society, ISSN: 0002-7820, Vol: 90, Issue: 4, Page: 1237-1242
2007
- 14Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
For the past few years, hydroxyapatite (HAp) has been identified as a potential biomaterial due to its excellent biocompatibility and bioactivity. The preparation of nanostructured HAp with controlled powder characteristics is a pre-requisite for processing it into useful biocomposites. Here, the synthesis of nanorods of calcium hydroxyapatite (Ca-HAp), strontium hydroxyapatite (Sr-HAp), and barium hydroxyapatite (Ba-HAp) by exploiting the metathetic reaction taking place in reverse micelles in the presence of cetyltrimethylammonium bromide has been reported. Powder X-ray diffraction analysis and thermogravimetric measurements confirm the formation of monophasic Ca-HAp and Sr-HAp. The growth of nanorods was further confirmed using transmission electron microscopy studies. The average lengths of Ca-HAp and Sr-HAp were ∼60 and 30 nm, respectively. However, the preparation of Ba-HAp invariably yielded a multiphasic mixture with other competitive phases like BaHPO and Ba(HPO). © 2007 The American Ceramic Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know