Design of hairpin ribozyme variants with improved activity for poorly processed substrates
FEBS Journal, ISSN: 1742-464X, Vol: 278, Issue: 4, Page: 622-633
2011
- 14Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef11
- Captures17
- Readers17
- 17
Article Description
Application of ribozymes for knockdown of RNA targets requires the identification of suitable target sites according to the consensus sequence. For the hairpin ribozyme, this was originally defined as YN *GUYB, with Y = U or C, and B = U, C or G, and C being the preferred nucleobase at positions -2 and +4. In the context of development of ribozymes for destruction of an oncogenic mRNA, we have designed ribozyme variants that efficiently process RNA substrates at UG*G UAA sites. Substrates with G*GUA sites were previously shown to be processed by the wild-type hairpin ribozyme. However, our study demonstrates that, in the specific sequence context of the substrate studied herein, compensatory base changes in the ribozyme improve activity for cleavage (eight-fold) and ligation (100-fold). In particular, we show that A and A are well tolerated if compensatory mutations are made at positions 6 and 7 of the ribozyme strand. Adenine at position +4 is neutralized by G→U, owing to restoration of a Watson-Crick base pair in helix 1. In this ribozyme-substrate complex, adenine at position +3 is also tolerated, with a slightly decreased cleavage rate. Additional substitution of A with uracil doubled the cleavage rate and restored ligation, which was lost in variants with A, C and G. The ability to cleave, in conjunction with the inability to ligate RNA, makes these ribozyme variants particularly suitable candidates for RNA destruction. © 2010 The Authors Journal compilation © 2010 FEBS.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know