Photoaddition to DNA by Nonintercalated Chlorpromazine Molecules
Photochemistry and Photobiology, ISSN: 0031-8655, Vol: 68, Issue: 5, Page: 692-697
1998
- 20Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Chlorpromazine (CPZ) forms photoadducts with DNA and photosensitizes DNA strand breaks. These reactions may be responsible for the reported photomutagenicity of CPZ and for the well-known cutaneous and ocular phototoxicity associated with this drug. We have investigated whether CPZ molecules that are intercalated between base pairs in double-stranded (ds) DNA are the absorbing species for the photoaddition reaction. Quenching of CPZ fluorescence by ds-DNA gave nonlinear Stern-Volmer plots, indicating that more than one type of complex is formed. Linear dichroism spectra of CPZ in the presence of ds-DNA showed a minimum at 345 nm, indicating that the absorption maxima of intercalation complex(es) are red-shifted compared to the absorption maximum of free CPZ at 307 nm. The sum of the absorption of all CPZ complexes with ds-DNA, obtained from dialysis experiments, was broadened and maximized at about 315 nm, indicating that complexes not involving intercalation dominate the absorption spectrum at λ < 350 nm. The wavelength dependence for covalent binding of CPZ to DNA was determined by irradiating H-CPZ in the presence of ds-DNA at 310, 322, 334, 346, 358 and 370 nm. The resulting spectrum correlated closely with the absorption spectrum of nonintercalated CPZ rather than with the spectrum of intercalated CPZ, indicating that the latter species is not the chromophore for the photoaddition reaction.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know