Releasing small ejaculates slowly increases per-gamete fertilization success in an external fertilizer: Galeolaria caespitosa (Polychaeta: Serpulidae)
Journal of Evolutionary Biology, ISSN: 1420-9101, Vol: 32, Issue: 2, Page: 177-186
2019
- 3Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef2
- Captures35
- Readers35
- 35
Article Description
The idea that male reproductive strategies evolve primarily in response to sperm competition is almost axiomatic in evolutionary biology. However, externally fertilizing species, especially broadcast spawners, represent a large and taxonomically diverse group that have long challenged predictions from sperm competition theory—broadcast spawning males often release sperm slowly, with weak resource-dependent allocation to ejaculates despite massive investment in gonads. One possible explanation for these counter-intuitive patterns is that male broadcast spawners experience strong natural selection from the external environment during sperm dispersal. Using a manipulative experiment, we examine how male reproductive success in the absence of sperm competition varies with ejaculate size and rate of sperm release, in the broadcast spawning marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). We find that the benefits of Fast or Slow sperm release depend strongly on ejaculate size, but also that the per-gamete fertilization rate decreases precipitously with ejaculate size. Overall, these results suggest that, if males can facultatively adjust ejaculate size, they should slowly release small amounts of sperm. Recent theory for broadcast spawners predicts that sperm competition can also select for Slow release rates. Taken together, our results and theory suggest that selection often favours Slow ejaculate release rates whether males experience sperm competition or not.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85058392444&origin=inward; http://dx.doi.org/10.1111/jeb.13403; http://www.ncbi.nlm.nih.gov/pubmed/30461107; https://academic.oup.com/jeb/article/32/2/177-186/7326201; https://dx.doi.org/10.1111/jeb.13403; https://onlinelibrary.wiley.com/doi/10.1111/jeb.13403
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know