The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019
Journal of Industrial Ecology, ISSN: 1530-9290, Vol: 26, Issue: 2, Page: 577-591
2022
- 16Citations
- 72Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Their geomorphological characteristics make island systems special focal points for sustainability challenges. The Circular Economy (CE) Action Plan of the European Union foresees tailored solution sets for Europe's outermost regions and islands to tackle region-specific sustainability challenges. We address the question of how islands can achieve more sustainable resource use by utilizing the socioeconomic metabolism (SEM) framework to assess and explore CE strategies for the Greek island of Samothraki. For this purpose, we apply material and energy flow analysis on a regional level and derive, as one of the first studies, a complete time series from 1929 to 2019 for socioeconomic biophysical stocks and flows according to mass-balance principles for an island economy. Results show that in the past 90 years Samothraki's material stocks grew fivefold, domestic material consumption threefold, and solid waste generation fivefold. Samothraki transitioned from an almost entirely circular biophysical economy toward one in which 40% of input materials and 30% of output materials are estimated as non-circular. This transition resulted in an accumulated solid waste stock on the island almost half the size of current material stocks in use. With this study we aim at providing ideas and opportunities for achieving more sustainable and circular material use on small islands. The published SEM database aims at supporting the public and the private sector and the island community at large with information key to establishing more sustainable material and energy use patterns on Samothraki. This article met the requirements for a Gold–Gold JIE data openness badge described at http://jie.click/badges.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know