What evolutionary processes maintain MHC IIꞵ diversity within and among populations of stickleback?
Molecular Ecology, ISSN: 1365-294X, Vol: 30, Issue: 7, Page: 1659-1671
2021
- 9Citations
- 29Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef8
- Captures29
- Readers29
- 29
- Mentions1
- Blog Mentions1
- Blog1
Article Description
Major Histocompatibility Complex (MHC) genes code for proteins that recognize foreign protein antigens to initiate T-cell-mediated adaptive immune responses. They are often the most polymorphic genes in vertebrate genomes. How evolution maintains this diversity remains of debate. Three main hypotheses seek to explain the maintenance of MHC diversity by invoking pathogen-mediated selection: heterozygote advantage, frequency-dependent selection, and fluctuating selection across landscapes or through time. Here, we use a large-scale field parasite survey in a stickleback metapopulation to test predictions derived from each of these hypotheses. We identify over 1000 MHC IIβ variants (alleles spanning paralogous genes) and find that many of them covary positively or negatively with parasite load, suggesting that these genes contribute to resistance or susceptibility. However, despite our large sample-size, we find no evidence for the widely cited stabilizing selection on MHC heterozygosity, in which individuals with an intermediate number of MHC variants have the lowest parasite burden. Nor do we observe a rare-variant advantage, or widespread fluctuating selection across populations. In contrast, we find that MHC diversity is best predicted by neutral genome-wide heterozygosity and between-population genomic divergence, suggesting neutral processes are important in shaping the pattern of metapopulation MHC diversity. Thus, although MHC IIβ is highly diverse and relevant to the type and intensity of macroparasite infection in these populations of stickleback, the main models of MHC evolution still provide little explanatory power in this system.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know