Partial sex linkage and linkage disequilibrium on the guppy sex chromosome
Molecular Ecology, ISSN: 1365-294X, Vol: 31, Issue: 21, Page: 5524-5537
2022
- 8Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef5
- Captures24
- Readers24
- 24
Article Description
The guppy Y chromosome has been considered a model system for the evolution of suppressed recombination between sex chromosomes, and it has been proposed that complete sex-linkage has evolved across about 3 Mb surrounding this fish's sex-determining locus, followed by recombination suppression across a further 7 Mb of the 23 Mb XY pair, forming younger “evolutionary strata”. Sequences of the guppy genome show that Y is very similar to the X chromosome. Knowing which parts of the Y are completely nonrecombining, and whether there is indeed a large completely nonrecombining region, are important for understanding its evolution. Here, we describe analyses of PoolSeq data in samples from within multiple natural populations from Trinidad, yielding new results that support previous evidence for occasional recombination between the guppy Y and X. We detected recent demographic changes, notably that downstream populations have higher synonymous site diversity than upstream ones and other expected signals of bottlenecks. We detected evidence of associations between sequence variants and the sex-determining locus, rather than divergence under a complete lack of recombination. Although recombination is infrequent, it is frequent enough that associations with SNPs can suggest the region in which the sex-determining locus must be located. Diversity is elevated across a physically large region of the sex chromosome, conforming to predictions for a genome region with infrequent recombination that carries one or more sexually antagonistic polymorphisms. However, no consistently male-specific variants were found, supporting the suggestion that any completely sex-linked region may be very small.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know