Data processing of point clouds for object detection for structural engineering applications
Computer-Aided Civil and Infrastructure Engineering, ISSN: 1093-9687, Vol: 28, Issue: 7, Page: 495-508
2013
- 108Citations
- 107Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This research investigates the use of high-resolution three-dimensional terrestrial laser scanners as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now able to capture over 1,000,000 points per second with an accuracy of ∼0.1 mm. This research focuses on developing the foundation toward the use of laser scanning to structural engineering applications, including structural health monitoring, collapse assessment, and post-hazard response assessment. One of the keys to this work is to establish a process for extracting important information from raw laser-scanned data sets such as the location, orientation, and size of objects in a scene, and location of damaged regions on a structure. A methodology for processing range data to identify objects in the scene is presented. Previous work in this area has created an initial foundation of basic data processing steps. Existing algorithms, including sharp feature detection and segmentation are implemented and extended in this work. Additional steps to remove extraneous and outlying points are added. Object detection based on a predefined library is developed allowing generic description of objects. The algorithms are demonstrated on synthetic scenes as well as validated on range data collected from an experimental test specimen and a collapsed bridge. The accuracy of the object detection is presented, demonstrating the applicability of the methodology. These additional steps and modifications to existing algorithms are presented to advance the performance of data processing on laser scan range data sets for future application in structural engineering applications such as robust determination of damage location and finite element modeling. © 2013 Computer-Aided Civil and Infrastructure Engineering.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know