Sunlight-sensitive carbon dots for plant immunity priming and pathogen defence.
Plant biotechnology journal, ISSN: 1467-7652
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Global food production faces persistent threats from environmental challenges and pathogenic attacks, leading to significant yield losses. Conventional strategies to combat pathogens, such as fungicides and disease-resistant breeding, are limited by environmental contamination and emergence of pathogen resistance. Herein, we engineered sunlight-sensitive and biodegradable carbon dots (CDs) capable of generating reactive oxygen species (ROS), offering a novel and sustainable approach for plant protection. Our study demonstrates that CDs function as dual-purpose materials: priming plant immune responses and serving as broad-spectrum antifungal agents. Foliar application of CDs generated ROS under light, and the ROS could damage the plant cell wall and trigger cell wall-mediated immunity. Immune activation enhanced plant resistance against pathogens without compromising photosynthetic efficiency or yield. Specifically, spray treatment with CDs at 240 mg/L (2 mL per plant) reduced the incidence of grey mould in N. benthamiana and tomato leaves by 44% and 12%, respectively, and late blight in tomato leaves by 31%. Moreover, CDs (480 mg/L, 1 mL) combined with continuous sunlight irradiation (simulated by xenon lamp, 9.4 × 10 lux) showed a broad-spectrum antifungal activity. The inhibition ratios for mycelium growth were 66.5% for P. capsici, 8% for S. sclerotiorum and 100% for B. cinerea, respectively. Mechanistic studies revealed that CDs effectively inhibited mycelium growth by damaging hyphae and spore structures, thereby disrupting the propagation and vitality of pathogens. These findings suggest that CDs offer a promising, eco-friendly strategy for sustainable crop protection, with potential for practical agricultural applications that maintain crop yields and minimize environmental impact.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know