PlumX Metrics
Embed PlumX Metrics

High dimensional model representation with principal component analysis

Journal of Mechanical Design, ISSN: 1050-0472, Vol: 136, Issue: 1
2014
  • 29
    Citations
  • 0
    Usage
  • 46
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    29
    • Citation Indexes
      29
  • Captures
    46

Article Description

In engineering design, spending excessive amount of time on physical experiments or expensive simulations makes the design costly and lengthy. This issue exacerbates when the design problem has a large number of inputs, or of high dimension. High dimensional model representation (HDMR) is one powerful method in approximating high dimensional, expensive, black-box (HEB) problems. One existing HDMR implementation, random sampling HDMR (RS-HDMR), can build an HDMR model from random sample points with a linear combination of basis functions. The most critical issue in RS-HDMR is that calculating the coefficients for the basis functions includes integrals that are approximated by Monte Carlo summations, which are error prone with limited samples and especially with nonuniform sampling. In this paper, a new approach based on principal component analysis (PCA), called PCA-HDMR, is proposed for finding the coefficients that provide the best linear combination of the bases with minimum error and without using any integral. Several benchmark problems of different dimensionalities and one engineering problem are modeled using the method and the results are compared with RS-HDMR results. In all problems with both uniform and nonuniform sampling, PCA-HDMR built more accurate models than RS-HDMR for a given set of sample points. Copyright © 2014 by ASME.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know