On the turbulence modeling of blood flow in a stenotic vessel
Journal of Biomechanical Engineering, ISSN: 1528-8951, Vol: 142, Issue: 1
2020
- 13Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- Captures32
- Readers32
- 32
Article Description
Blood flow dynamics in a stenosed, subject-specific carotid bifurcation is numerically simulated using direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) equations closed with turbulence models. DNS is meant to provide a term of comparison for the RANS calculations, which include classic two-equations models (k-ϵ and k-ω) as well as a transitional three-equations eddy-viscosity model (kT-kL-ω). Pulsatile inlet conditions based on in vivo ultrasound measurements of blood velocity are used. The blood is modeled as a Newtonian fluid, and the vessel walls are rigid. The main purpose of this work is to highlight the problems related to the use of classic RANS models in the numerical simulation of such flows. The time-averaged DNS results, interpreted in view of their finite-time averaging error, are used to demonstrate the superiority of the transitional RANS model, which is found to provide results closer to DNS than those of conventional models. The transitional model shows better predictive capabilities in terms of turbulence intensity, temporal evolution of the pressure along the cardiac cycle, and the oscillatory shear index (OSI). Indeed, DNS brings to light the locally transitional or weakly turbulent state of the blood flow, which presents velocity and pressure fluctuations only in the poststenotic region of the internal carotid artery during systole, while the flow is laminar during diastole.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85072962388&origin=inward; http://dx.doi.org/10.1115/1.4044029; http://www.ncbi.nlm.nih.gov/pubmed/31201739; https://asmedigitalcollection.asme.org/biomechanical/article/doi/10.1115/1.4044029/955412/On-the-Turbulence-Modeling-of-Blood-Flow-in-a; https://dx.doi.org/10.1115/1.4044029; https://asmedigitalcollection.asme.org/biomechanical/article-abstract/142/1/011009/955412/On-the-Turbulence-Modeling-of-Blood-Flow-in-a?redirectedFrom=fulltext
ASME International
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know