Comparison of Model Predictive Control and Distance Constrained-Adaptive Concurrent Dynamic Programming Algorithms for Extended Range Electric Vehicle Optimal Energy Management
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, ISSN: 1528-9028, Vol: 143, Issue: 9
2021
- 6Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Intelligent energy management of hybrid electric vehicles is feasible with a priori information of route and driving conditions. Model predictive control (MPC) with finite horizon road grade preview has been proposed as a viable predictive energy management approach. We propose that our novel distance constrained-adaptive concurrent dynamic programming (DC-ACDP) approach can provide better energy management than MPC without any road grade information in context of an extended range electric vehicle (EREV). In this article, we have evaluated and compared the MPC and DC-ACDP energy management strategies for a real-world driving scenario. The simulations were conducted for a 160 km drive with road grade variation between +4% and -1%. Results show that the DC-ACDP approach is near-optimal and improves overall energy consumption by a maximum of 4.25%, in comparison to the simple MPC with a finite horizon road grade preview implementation. Additionally, a higher value for energy storage system state of charge (SOC) tracking penalty p results in the net energy consumption for MPC to converge toward that of DC-ACDP. A combination of the MPC and DC-ACDP approach is also evaluated with only 1.25% maximum improvement over simple MPC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85125092514&origin=inward; http://dx.doi.org/10.1115/1.4050884; https://asmedigitalcollection.asme.org/dynamicsystems/article/143/9/094504/1107110/Comparison-of-Model-Predictive-Control-and; http://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/143/9/094504/6696674/ds_143_09_094504.pdf; https://dx.doi.org/10.1115/1.4050884
ASME International
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know