Layer-Specific Residual Deformations and Their Variation Along the Human Aorta
Journal of biomechanical engineering, ISSN: 1528-8951, Vol: 143, Issue: 9
2021
- 11Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- Captures4
- Readers4
Article Description
This study described the regional distribution of layer-specific residual deformations in fifteen human aortas collected during autopsy. Circumferentially and axially cut strips of standardized dimensions from the anterior quadrant of nine consecutive aortic levels were photographed to obtain the zero-stress state for the intact wall. The strips were then dissected into layers that were also photographed to obtain their zero-stress state. Changes in layer-specific opening angle, residual stretches, and thickness at each aortic level and direction were determined via image analysis. The circumferential and axial opening angles of the intima were ∼240 deg and ∼30 deg, respectively, throughout the aorta; those of the adventitia were ∼150 deg and -20 deg to 70 deg. The opening angles of the intact wall and media were similar in either direction. The circumferential residual stretches of the intima and the axial residual stretches of the media showed high values in the aortic arch, decreasing in the descending thoracic aorta and increasing toward the iliac artery bifurcation, while the axial residual stretches of the adventitia increased distally. The remaining residual stretches did not vary significantly with aortic level, suggesting an intimal role in determining circumferential, as well as medial and adventitial roles in determining axial residual stretches. We conclude that the tensile residual stretches released in the intima and media upon separation, and the compressive residual stretches released in the adventitia may moderate the inverse transmural stress gradients under physiologic loads, resulting from the >180 deg circumferential opening angle of the intact wall.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107163497&origin=inward; http://dx.doi.org/10.1115/1.4050913; http://www.ncbi.nlm.nih.gov/pubmed/33876198; https://asmedigitalcollection.asme.org/biomechanical/article/143/9/094504/1107990/Layer-Specific-Residual-Deformations-and-Their; https://dx.doi.org/10.1115/1.4050913; https://asmedigitalcollection.asme.org/biomechanical/article-abstract/143/9/094504/1107990/Layer-Specific-Residual-Deformations-and-Their?redirectedFrom=fulltext
ASME International
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know