Stability of the Interface Between Two Immiscible Liquids in a Model Eye Subject to Saccadic Motion
Journal of biomechanical engineering, ISSN: 1528-8951, Vol: 144, Issue: 5
2022
- 4Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures5
- Readers5
Article Description
The interface between silicone oil and saline layers in a three-dimensional model of the eye chamber was studied under different eye-like saccadic motions in order to determine the stability of the interface and propensity for emulsification in the bulk. The effect of level of fill, saccade amplitude, angular velocity, latency time, and orientation were investigated experimentally in spherical flasks with internal diameters 10, 28, and 40 mm, as well as a 28 mm diameter flask with an indent replicating the lens or the presence of a buckle. The deformation of the interface was quantified in terms of the change in its length in two-dimensional images. The deformation increased with Weber number, We, and was roughly proportional to We for We > 1. The presence of the lens gave rise to higher deformation near this feature. In all cases emulsification was not observed in either bulk fluid. The velocity profile in the spherical configuration was mapped using particle imaging velocimetry and is compared with an analytical solution and a short computational fluid dynamics simulation study. These confirm that the saccadic motion induces flow near the wall in the saline layer and significantly further into the chamber in the silicone oil. Surfactants soluble in the aqueous and oil phases reduced the interfacial tension, increasing deformation but did not lead to emulsification in the bulk.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122904088&origin=inward; http://dx.doi.org/10.1115/1.4053004; http://www.ncbi.nlm.nih.gov/pubmed/34773461; https://asmedigitalcollection.asme.org/biomechanical/article/144/5/051004/1127985/Stability-of-the-Interface-Between-Two-Immiscible; https://dx.doi.org/10.1115/1.4053004
ASME International
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know