Biomechanical Evaluation of Tracheal Needle Puncture Forces: Comparative Analysis of Annular Ligaments and Tracheal Cartilage
Journal of Biomechanical Engineering, ISSN: 1528-8951, Vol: 146, Issue: 1
2024
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Percutaneous tracheotomies (PCT) are commonly performed minimally invasive procedures involving the creation of an airway opening through an incision or puncture of the tracheal wall. While the medical intervention is crucial for critical care and the management of acute respiratory failure, tracheostomy complications can lead to severe clinical symptoms due to the alterations of the airways biomechanical properties/structures. The causes and mechanisms underlaying the development of these post-tracheotomy complications remain largely unknown. In this study, we aimed to investigate the needle puncture process and its biomechanical characteristics by using a well establish porcine ex vivo trachea to simulate the forces involved in accessing airways during PCT at varying angular approaches. Given that many procedures involve inserting a needle into the trachea without direct visualization of the tracheal wall, concerns have been raised over the needle punctures through the cartilaginous rings as compared to the space between them may result in fractured cartilage and post-tracheostomy airway complications. We report a difference in puncture force between piercing the cartilage and the annular ligaments and observe that the angle of puncture does not significantly alter the puncture forces. The data collected in this study can guide the design of relevant biomechanical feedback system during airway access procedures and ultimately help refine and optimize PCT.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85177102554&origin=inward; http://dx.doi.org/10.1115/1.4063821; http://www.ncbi.nlm.nih.gov/pubmed/37851532; https://asmedigitalcollection.asme.org/biomechanical/article/146/1/011008/1169551/Biomechanical-Evaluation-of-Tracheal-Needle; https://dx.doi.org/10.1115/1.4063821; https://asmedigitalcollection.asme.org/biomechanical/article-abstract/doi/10.1115/1.4063821/1169551/Biomechanical-Evaluation-of-Tracheal-Needle?redirectedFrom=fulltext
ASME International
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know