PlumX Metrics
Embed PlumX Metrics

Comparisons of different wind power forecasting systems

ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, Vol: 1, Page: 105-113
2010
  • 2
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

Wind forecasting models are divided in two main categories, physical and statistical. The former are based on Numerical Weather Prediction (NWP). The statistical models, on the other hand, use on-line measurements. In this paper we use hybrid models, which combine elements of both types. In particular three forecast systems based on Artificial Neural Networks have been developed in order to predict power production of a wind farm in different time horizons: 1, 3, 6, 12 and 24 hours. In the first forecast system, the neural network has been used only as a statistic model based on time series of on-line measured wind power, while in the second and third forecast systems different combinations of measured data and numerical weather predictions have been used, improving the performance in the predictions, especially over long time horizons. The error of the different forecast systems is investigated for various forecasting horizons and statistical distributions of the error are calculated and presented. © 2010 by ASME.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know