CFD-based throughflow analysis of transonic flows in steam turbines
Proceedings of the ASME Turbo Expo, Vol: 2C-2019
2019
- 2Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
A CFD-based throughflow solver is applied to the meridional analysis of low-pressure steam turbine modules. The throughflow code inherits its numerical scheme from a state-of-the-art CFD solver (TRAF code) and incorporates real gas capabilities, three-dimensional flow features and spanwise mixing models. Secondary flow effects are introduced via a concentrated vortex model. Tip gap and shroud leakage effects are modelled in terms of source vectors in the system of governing equations. The impact of part-span shrouds and snubbers are accounted for, on a local basis, through suitable body force fields. The AUSM-up upwind strategy has been adopted as a basis to construct a numerical flux scheme explicitly suited for throughflow applications. The original formulation has been adapted to handle real gas flows and to embed the treatment of body force fields in a fully consistent framework. The capability of the procedure is assessed by analysing the low-pressure modules of two large steam turbines designed and manufactured by Ansaldo Energia. These 3-stage modules include rotor tip shrouds and part-span snubbers, and feature supersonic flow and large blade twist. Throughflow predictions in terms of main performance figures and radial distributions of flow quantities are compared to experimental data and 3D steady viscous analyses. It will be shown how the proposed CFD-based throughflow model can be fruitfully used in the early stages of the design as it delivers predictions of comparable accuracy with 3D CFD analyses at a fraction of the computational time.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85075345073&origin=inward; http://dx.doi.org/10.1115/gt2019-90851; https://asmedigitalcollection.asme.org/GT/proceedings/GT2019/58578/Phoenix,%20Arizona,%20USA/1066564; http://asmedigitalcollection.asme.org/GT/proceedings-pdf/doi/10.1115/GT2019-90851/6438696/v02ct41a021-gt2019-90851.pdf; https://dx.doi.org/10.1115/gt2019-90851
ASME International
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know