DESIGN METHODOLOGY OF GEROTOR HYDRAULIC MACHINES FOR MECHATRONIC APPLICATIONS
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Vol: 6
2021
- 4Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In mechatronic applications such as electro-hydrostatic actuators, gerotor machines are often preferred over other technologies due to their high efficiency, low wear, low noise, and compactness. The design approach for hydraulic machines, either for motoring or pumping applications, involves the definition of different geometrical parameters, which affect their performance. Thus, the designer is often left without a clear design method to adopt. In this perspective, the presented research aims at providing a general design methodology of gerotor machines for their integration into high-efficiency mechatronic devices. In particular, the study focuses on the analytical and numerical characterization of the optimal tooth aspect ratio and maximum eccentricity between gears. Indeed, these two features are often left to the experience of the designer or are selected with empirical formulations. Our method is validated by means of numerical data from computational fluid-dynamic models to assess the performance of the hydraulic units.
Bibliographic Details
ASME International
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know