High wet-etch resistance SiO films deposited by plasma-enhanced atomic layer deposition with 1,1,1-tris(dimethylamino)disilane
Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, ISSN: 1520-8559, Vol: 40, Issue: 2
2022
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A novel precursor, 1,1,1-tris(dimethylamino)disilane {TADS, [(HC)N]SiH}, is used to deposit silicon dioxide (SiO) films in a temperature range of 115-480 °C by thermal atomic layer deposition (tALD) and plasma-enhanced atomic layer deposition (PEALD) techniques. Compared to tris(dimethylamino)silane (TDMAS), the additional Si-Si bond in TADS is expected to enhance the reactivity of the molecule due to the polarization of the bond. In the tALD process, TADS gives a growth rate of 0.06 nm/cycle, which is approximately 20% higher than that of TDMAS, and an excellent conformality (>95% step coverage) in high aspect ratio nanotrenches (6:1). In the case of the PEALD process, TADS leads to not only a higher or at least comparable growth rates (0.11 nm/cycle), but also a higher bulk film density (∼2.38 g/cm). As a result, the PEALD SiO films of TADS show a wet-etch rate down to 1.6 nm/min in 200:1 HF, which is comparable to that of the thermal oxide. Analyzed with Fourier-Transform Infrared (FTIR), the SiO films contain predominant Si−O bonds and a low level of Si−H and O−H bonds, consistent with the observed high wet-etch resistance. Furthermore, the PEALD SiO films deposited at 310 °C have at least 75% step coverage in high aspect ratio nanotrenches, suggesting that TADS is applicable for forming high-quality SiO films on both planar and patterned surfaces.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know