Time-resolved optical imager for assessment of cerebral oxygenation
Journal of Biomedical Optics, ISSN: 1083-3668, Vol: 12, Issue: 3, Page: 034019
2007
- 89Citations
- 54Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations89
- Citation Indexes89
- 89
- CrossRef76
- Captures54
- Readers54
- 54
Article Description
A time-resolved optical instrument allowing for noninvasive assessment of cerebral oxygenation is presented. The instrument is equipped with picosecond diode lasers, fast photodetectors, and timecorrelated single photon counting electronics. This technology enables depth-resolved estimation of changes in absorption and, in consequence, assessment of changes in hemoglobin concentrations in the brain cortex. Changes in oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) can be evaluated selectively in extra- and intracerebral tissue compartments using the moments of distributions of times of flight of photons measured at two wavelengths in the near-infrared region. The combination of the data acquired from multiple sources and detectors located on the surface of the head with the depth-resolved analysis, based on the moments, enables imaging of cortex oxygenation. Results of the tests on physical phantoms as well as in vivo validation of the instrument during the motor stimulation experiment are presented. © 2007 Society of Photo-Optical Instrumentation Engineers.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=34547917912&origin=inward; http://dx.doi.org/10.1117/1.2743964; http://www.ncbi.nlm.nih.gov/pubmed/17614727; http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.2743964; https://dx.doi.org/10.1117/1.2743964; https://www.spiedigitallibrary.org/access-suspended
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know