Experimental and numerical simulation research on laser shock forming of thin metal sheet of brass
Optical Engineering, ISSN: 1560-2303, Vol: 47, Issue: 2
2008
- 4Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Laser shock forming (LSF) of sheet metal is a new technique realized by applying an impulsive pressure generated by a laser-induced shock wave on the surface of metal sheet. Our objective is to examine the deformation and the surface quality of LSF. LSF of a brass metal sheet is investigated using a Q-switched Nd:YAG laser with an energy per pulse of 15 to 50 J. The microhardness, roughness, and microstructure of the processed brass specimen are examined. ABAQUS software is employed to simulate the LSF process. The central displacement of the shocked region is measured and compared with the simulation. The results reveal that the microhardness of the brass specimen increases by about 20% because of the LSP treatment, and the surface quality and the microstructure has no visible change: LSF is a mechanical process, not a thermal process, and no remarkable ablation is observed. The higher the pulse energy, the higher is the central displacement of the shocked region obtained. The deformation of the simulation matches the experiment quite well.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84991875829&origin=inward; http://dx.doi.org/10.1117/1.2844699; http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.2844699; http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1088715; https://dx.doi.org/10.1117/1.2844699; https://www.spiedigitallibrary.org/access-suspended
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know