Automatic quality control using hierarchical shape analysis for cerebellum parcellation
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, ISSN: 1605-7422, Vol: 10949
2019
- 1Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Automatic and accurate cerebellum parcellation has long been a challenging task due to the relative surface complexity and large anatomical variation of the human cerebellum. An inaccurate segmentation will inevitably bias further studies. In this paper we present an automatic approach for the quality control of cerebellum parcellation based on shape analysis in a hierarchical structure. We assume that the overall shape variation of a segmented structure comes from both population and segmentation variation. In this hierarchical structure, the higher level shape mainly captures the population variation of the human cerebellum, while the lower level shape captures both population and segmentation variation. We use a partial least squares regression to combine the lower level and higher level shape information. By compensating for population variation, we show that the estimated segmentation variation is highly correlated with the accuracy of the cerebellum parcellation results, which not only provides a confidence measurement of the cerebellum parcellation, but also gives some clues about when a segmentation software may fail in real scenarios.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85068349093&origin=inward; http://dx.doi.org/10.1117/12.2512805; https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10949/2512805/Automatic-quality-control-using-hierarchical-shape-analysis-for-cerebellum-parcellation/10.1117/12.2512805.full; https://dx.doi.org/10.1117/12.2512805; https://www.spiedigitallibrary.org/access-suspended
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know