Dual-wavelength interferometry based on dispersion
Proceedings of SPIE - The International Society for Optical Engineering, ISSN: 1996-756X, Vol: 12315
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Interferometry is commonly used for an optical element surface accurate test. But the testing dynamic range is affected by the ambiguity of 2π. To solve this problem, dual-wavelength interferometry testing method has been proposed. The current dual-wavelength interference system usually uses two different wavelength monochromatic lights to work time-sharing and obtain their interference patterns respectively, which makes the system complex and measurement time-consuming. In this paper, we put forward a dual-wavelength testing method based on Michelson interference system. It enables simple and efficient extraction of the phase distribution of the tested optical element surface to be realized in a sub-millimeter scale dynamic range with a nanometer accuracy. A sodium lamp has two different wavelengths, 589nm and 589.6nm, it is selected as the light of our interference measurement system, so the equivalent wavelength is 0.579mm. A dispersion element is adopted to make the interference patterns which correspond to 589nm and 589.6nm can be separated. Furthermore, in order to eliminate the influence of background light intensity on the interference patterns processing, we do Fourier transform for the patterns recorded by CCD to extract the spectral component related to the tested phase. And then, an inverse Fourier transform for this component is done to obtain the phase distribution. Finally, the tested optical element surface can be obtained from the phase distribution. Simulations have been done to validate the feasibility of the method. The test error of the surface profile is 0.252nmRMS. The simulations prove that this method can guarantee high accuracy and expand the detection range.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147510579&origin=inward; http://dx.doi.org/10.1117/12.2662687; https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12315/2662687/Dual-wavelength-interferometry-based-on-dispersion/10.1117/12.2662687.full; https://dx.doi.org/10.1117/12.2662687; https://www.spiedigitallibrary.org/access-suspended
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know