Effect of transverse electrical fields on x-ray amplification in a capillary-discharge Z-pinch
Proceedings of SPIE - The International Society for Optical Engineering, ISSN: 0277-786X, Vol: 4505, Page: 47-53
2001
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
The effect of the transverse-direction electrical fields on the stability and dynamics of a capillary discharge Z-pinch, at conditions for which soft x-ray lasing in Ne-like Ar has been demonstrated, is studied. It is shown that the transverse electrical fields of the sliding surface discharge provide the instability-free compression and heating of the plasma. The stable and homogeneous heating and compression allows achievement of the appropriate conditions for the soft x-ray lasing in Ne-like Ar. Numerical calculations using the MHD model of the discharge yield new predictions for dynamics and stability of the plasma collapse in the presence of the transverse electrical fields and explain details of experimental observations without artificial adjustments. © Society of Photo-Optical Instrumentation Engineers.
Bibliographic Details
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know