Ripple-patterned substrates for light enhancement applications
Proceedings of SPIE - The International Society for Optical Engineering, ISSN: 0277-786X, Vol: 7376
2010
- 10Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
We report on surface structuring of sapphire, silicon carbide, and silicon by femtosecond laser pulses in multipulse irradiation mode. The formed ripples on the flat surface or on the vertical walls with hierarchical structures whose feature sizes are ranging from the irradiation wavelength down to ∼ 50 nm are prospective templates for surface enhanced Raman scattering after coating with plasmonic metals. We study complex patterns of fine ripples with periods Λ, as small as λ/Rp, where Rp ≃ 3 - 5. The mechanisms suggested for such Rp values are discussed: temperature and density of breakdown plasma, angle of incidence, mechanism of second harmonic generation (SHG) and absorption. Predictions of the surface and bulk models of ripple formation are compared with experimental values of Rp-factor. We propose a model of ripple formation on the surface, which is based on the known in-bulk sphere-to-plane formation of breakdown plasma in the surface proximity. In semiconductor 4H:SiC normal ripples with periods 190 and 230 nm were recorded with 800 nm and 1030 nm fs-laser pulses respectively. We show that the period of ripples is defined by the dielectric properties of crystalline (solid) phase rather than the molten phase in the case of silicon. Generation of SHG on the surface of sample and plasma nano-bubbles are discussed: surface-SHG is found not important in ripples' formation as revealed by comparative study of periods on AlO and TiO at 800 nm wavelength of irradiation. We propose that ripple periodicity is pinned to the smallest possible standing wave cavity (λ/n)/2 inside material of refractive index n. © 2010 SPIE.
Bibliographic Details
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know