Homogeneous and sandwich active panels under deterministic and stochastic excitation
Journal of the Acoustical Society of America, ISSN: 0001-4966, Vol: 125, Issue: 6, Page: 3696-3706
2009
- 16Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper an element-based model is used to predict the structural response and sound radiation of two smart panels excited by (a) an acoustic plane wave, (b) a stochastic acoustic diffuse field, and (c) a turbulent boundary layer. The first panel is made of aluminum, while the second is a composite sandwich panel with equivalent static stiffness but four times lower mass per unit area. The panels are equipped with 16 decentralized velocity feedback control loops using idealized point force actuators. In contrast to previous studies on smart panels, the analysis is extended to the upper end of the audio frequency range. In this frequency region the response and sound radiation of the panels strongly depend on the spatial characteristics of the excitation field and the sound radiation properties with respect to the bending wavelength on the panels. Considerable reduction in structural response and sound radiation is predicted for the low audio frequency range where the panel response is dominated by well separated resonances of low order structural modes. It is also found that some reduction can be achieved around acoustic and convective coincidence regions. © 2009 Acoustical Society of America.
Bibliographic Details
Acoustical Society of America (ASA)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know