PlumX Metrics
Embed PlumX Metrics

Second-harmonic generation of the lowest-order antisymmetric Lamb wave at a closed parallel crack

Journal of the Acoustical Society of America, ISSN: 1520-8524, Vol: 148, Issue: 4, Page: 2073-2085
2020
  • 11
    Citations
  • 0
    Usage
  • 11
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    11
    • Citation Indexes
      11
  • Captures
    11

Article Description

The second-harmonic generation of the fundamental antisymmetric Lamb wave at a closed parallel crack in an elastic plate is studied by numerical analysis. The closed crack is modeled as a spring-type interface with quadratic nonlinearity. Based on a perturbation method, the problem of nonlinear Lamb wave scattering is decomposed into two linearized problems, i.e., for the linear reflection/transmission of the incident Lamb wave at the crack and for the generation/radiation of the second-harmonic Lamb waves due to the contact nonlinearity. The reduced problems are solved by the finite element method in the frequency domain. Numerical results demonstrate significant effects of the crack resonance on the linear and nonlinear Lamb wave scattering responses, which appear as sharp peaks/dips in the reflection/transmission spectra and enhanced second-harmonic amplitudes at some frequencies. Two simple frequency selection rules are established which explain the enhanced generation of the second-harmonic Lamb waves. The time-domain analysis is also carried out to supplement the frequency-domain analysis, which confirms that the incident Lamb wave interacts with the crack at some specific frequencies in its bandwidth in a selective manner and enhances the generation of the second-harmonic components.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know