Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration
Molecular Pharmacology, ISSN: 0026-895X, Vol: 105, Issue: 2, Page: 64-74
2024
- 11Citations
- 25Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef10
- Captures25
- Readers25
- 25
- Mentions1
- News Mentions1
- 1
Most Recent News
Pharmacological targeting of senescence with senolytics as a new therapeutic strategy for neurodegeneration.
Mol Pharmacol. 2023 Dec 8; Authors: Richardson M, Richardson DR PubMed: 38164616 Submit Comment
Review Description
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as “senolytics” holds great promise for the management of Alzheimer’s and Parkinson’s disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0026895X24000816; http://dx.doi.org/10.1124/molpharm.123.000803; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85182273721&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38164616; https://linkinghub.elsevier.com/retrieve/pii/S0026895X24000816; https://dx.doi.org/10.1124/molpharm.123.000803; https://molpharm.aspetjournals.org/content/105/2/64
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know