Entanglement classifier in chemical reactions
Science Advances, ISSN: 2375-2548, Vol: 5, Issue: 8, Page: eaax5283
2019
- 12Citations
- 40Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef11
- Captures40
- Readers40
- 40
- Mentions1
- News Mentions1
- News1
Most Recent News
Quantum entanglement in chemical reactions? Now there's a way to find out
For the first time, scientists have developed a practical way to measure quantum entanglement in chemical reactions.
Article Description
The Einstein, Podolsky, and Rosen (EPR) entanglement, which features the essential difference between classical and quantum physics, has received wide theoretical and experimental attentions. Recently, the desire to understand and create quantum entanglement between particles such as spins, photons, atoms, and molecules is fueled by the development of quantum teleportation, quantum communication, quantum cryptography, and quantum computation. Although most of the work has focused on showing that entanglement violates the famous Bell’s inequality and its generalization for discrete measurements, few recent attempts focus on continuous measurement results. Here, we have developed a general practical inequality to test entanglement for continuous measurement results, particularly scattering of chemical reactions. After we explain how to implement this inequality to classify entanglement in scattering experiments, we propose a specific chemical reaction to test the violation of this inequality. The method is general and could be used to classify entanglement for continuous measurement results.
Bibliographic Details
American Association for the Advancement of Science (AAAS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know