Tinkering with enzymes: What are we learning?
Science, ISSN: 0036-8075, Vol: 236, Issue: 4805, Page: 1252-1258
1987
- 250Citations
- 59Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations250
- Citation Indexes250
- 250
- CrossRef220
- Captures59
- Readers59
- 59
Article Description
It is now possible, by site-directed mutagenesis of the gene, to change any amino acid residue in a protein to any other. In enzymology, application of this technique is leading to exciting new insights both into the mechanism of catalysis by particular enzymes, and into the basis of catalysis itself. The precise and often delicate changes that are being made in and near the active sites of enzymes are illuminating the interdependent roles of catalytic groups, and are allowing the first steps to be taken toward the rational alteration of enzyme specificity and reactivity.
Bibliographic Details
American Association for the Advancement of Science (AAAS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know