Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress∇
Molecular and Cellular Biology, ISSN: 0270-7306, Vol: 29, Issue: 3, Page: 794-807
2009
- 43Citations
- 75Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations43
- Citation Indexes43
- 43
- CrossRef34
- Captures75
- Readers75
- 73
Article Description
DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress. Copyright © 2009, American Society for Microbiology. All Rights reserved.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=59249088618&origin=inward; http://dx.doi.org/10.1128/mcb.01357-08; http://www.ncbi.nlm.nih.gov/pubmed/19029246; http://mcb.asm.org/cgi/doi/10.1128/MCB.01357-08; https://syndication.highwire.org/content/doi/10.1128/MCB.01357-08; https://www.tandfonline.com/doi/full/10.1128/MCB.01357-08; https://dx.doi.org/10.1128/mcb.01357-08; http://mcb.asm.org/content/29/3/794; https://mcb.asm.org/content/29/3/794; https://mcb.asm.org/content/29/3/794.abstract; https://mcb.asm.org/content/29/3/794.full.pdf; https://mcb.asm.org/content/mcb/29/3/794.full.pdf; http://f1000.com/1145216#eval602371; https://journals.asm.org/doi/10.1128/MCB.01357-08; https://journals.asm.org/doi/abs/10.1128/MCB.01357-08
American Society for Microbiology
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know